
我们知道在整数环及数域上一元多项式环中都有因子分解定理 ,

那么在一般的整环中因子分解定理是否成立呢?

本节将就此问题进行简单讨论 ,

假设本节所涉及的环均为整环 ,

若 R 是整环 , 则 U(R)表示 R 的单位群 , R*表示 R 的非零元构成的集合 ,

R�表示 R 的非零、不可逆元构成的集合 , 即R�=R*‒U(R) ,

一、整除性、不可约元和素元

定义 7.1 设 R 是整环 , a , b 属于 R , 若存在属于 R 的 c , 使得 a=bc ,

则称 b 整除 a

或称 b 是 a 的因子 , 一般地 , 将其记为 b|a ,

如果不存在这样的 c , 则称 b 不整除 a , 或称 b 不是 a 的因子 , 记为 b∤a ,

若 b|a 和 a|b 同时成立 , 则称 a 与 b 相伴 , 记作 a~b ,

R 的可逆元及与 a 相伴的元素都是 a 的因子 , 称这样的因子为 a 的平凡因子 ,

a 的其他因子(如果有的话)称为 a 的真因子 ,

整除有如下性质:

命题 7.1 设 R 是整环 , 若 a , b , c , x , y 属于 R , 则下列结论成立:

(1)a|a(整除具有反身性);

(2)如果 a|b 且 b|c , 那么 a|c(整除具有传递性);

(3)如果 a|b 且 a|c , 那么 a|(xb+yc);

(4)a|b⟺⟨b⟩包含于⟨a⟩;

(5)a~b⟺⟨a⟩=⟨b⟩;



命题 7.2 设 R 是整环 , a , b , c 属于 R , 若 a=bc 且 a≠0 , 则

(1)当 b~a 时 , c 是可逆元;

(2)当 b 是可逆元时 , c~a

(3)若 b 是 a 的真因子 , 则 c 也是 a 的真因子 ,

证: (2)的结论是明显的 , (3)的结论可以由(1) , (2)得出 , 我们仅需要证明(1) ,

若 b~a , 则存在属于 R 的 d , 使得 b=ad , 那么 a=adc ,

根据整环的消去律可知 1=dc , 即 c 是可逆元 ,

例 7.1 在整环 Z[ −3]={a+b −3|a , b ∈ Z}中 , 证明 2∤(1± −3) ,

证: 若 2|(1± −3) , 则存在属于 Z[ −3]的α , 使得 2α=(1± −3) ,

但是α=1± −3
2

不属于 Z[ −3] , 矛盾 , 因此 2∤(1± −3) ,

例 7.2 在整环 Z[ −3]={a+ −3b|a , b ∈ Z}中 , 求 4 的所有因子 ,

解: 若α=a+b −3 , 则 N(α)=a2+3b2 ,

若令 4=αβ , 其中α , β属于 Z[ −3] , 则 16=N(α)N(β) ,

当 N(α)=1 , N(β)=16 时 , α=±1 , B= 4
±α

=±4;

当 N(α)=2 , N(β)=8 时 , 这样的α , β不存在;

当 N(α)=4 , N(β)=4 时 , α=±2 , β= 4
±2

=±2 或α=±(1± −3) , β=±2(1∓ −3)

从而 4 的所有因子为α=±1 , ±2 , ±(1± −3) , ±4 ,

定义 7.2 令 R 是整环 , a , b 属于 R , 若存在属于 R 的 d , 使得 d|a , d|b ,

则称 d 为 a , b 的公因子 ,

特别地 , 若 d 为 a , b 的公因子 , 并且对于任意 a , b 的公因子 c 有 c|d ,

则称 d 为 a , b 的最大公因子 , 记为(a , b) ,

若 1 是 a , b 的最大公因子 , 则称 a 与 b 互素 ,



根据定义易知 , 两个最大公因子相伴 ,

实际上 , 还容易验证最大公因子具有如下性质:

(1)(a , (b , c))~((a , b) , c);

(2)(ca , cb)~c(a , b);

(3)(a , b)~1 , (a , c)~1⇒(a , bc)~1 ,

两个元素的最大公因子的定义及性质可以推广到有限个元素上 ,

例 7.3 在高斯整环 Z[i]中 , 求 1+i 和 3 的公因子和最大公因子 ,

解: 若α=a+bi 是 1+i 的因子 , 则 N(α)|N(1+i) , 即(α2+b2)|2 ,

因而 N(α)=2 或 1 , α=±(1±i)或±1 或±i , 显然 , 1+i 仅有平凡因子 ,

若α=a+bi 是 3 的因子 , 则 N(α)|N(3) , 即(a2+b2)|9 ,

因而 N(α)=1 或 3 或 9 , 显然 , N(α)≠3 ,

当 N(α)=1 时 , α=±1 或±i , 当 N(α)=9 时 , α=±3 或±3i ,

所以 , 3 只有平凡因子: ±1 , ±i , ±3 , ±3i ,

因此 , ±1 , ±i 是 1+i 和 3 的公因子 , 这些公因子彼此相伴 ,

因而它们也是 1+i 和 3 的最大公因子 ,

定义 7.3 设 R 是整环 , a 属于R� , 若 a 只有平凡因子 , 则称 a 是 R 的不可约元 ,

若 a 有非平凡因子 , 则称 a 是 R 的可约元 ,

定义 7.4 设 R 是整环 , p 属于R� ,

若从 p|ab 能够推出 p|a 或 p|b , 则称 p 是 R 的素元



命题 7.3 设 R 是整环 , a , b 属于 R 且 a~b ,

若 a 是 R 的不可约元(或素元) , 则 b 是 R 的不可约元(或素元) ,

证: 由 a~b 可知 , 存在可逆元 u , 使得 b=au , 又由 a 属于R�可知 b 属于R� ,

若 c 是 b 的因子 , 则 c 是 a 的因子 ,

因为 a 只有平凡因子 , 所以 c 是可逆元或 c 与 a 相伴 , 从而 , c 与 b 相伴 ,

也就是说 , c 是 b 的平凡因子 , b 是不可约元 ,

若 b|cd , 则 a|cd ,

因为 a 是素元 , 所以 a|c 或 a|d , 而 a=bu‒1 , 因此 , b|c 或 b|d , 即 b 是素元

在讨论因子分解问题时 , 我们认为相伴的两个元素是一样的

素元的概念也可以用理想的语言表述为:

命题 7.4 若 R 是整环 , p 属于 R , 则当且仅当⟨p⟩是非零素理想时 , p 是素元

证: 若 p 是素元 , 则 p 属于R� , 从而⟨p⟩是 R 的非零真理想 ,

若令 ab 属于⟨p⟩ , 则 p|ab , 从而 p|a 或 p|b ,

因此 a 属于⟨p⟩或 b 属于⟨p⟩ , 即⟨p⟩是素理想 ,

反之 , 若⟨p⟩是非零素理想 , 则 p 属于R� ,

若令 p|ab , 则 ab 属于⟨p⟩ ,

因为⟨p⟩是素理想 , 所以 a 属于⟨p⟩或 b 属于⟨p⟩ , 进而 p|a 或 p|b , 于是 p 是素元

命题 7.5 令 R 是整环 , 则 R 中素元一定是不可约元 ,

证: 若令 p 是素元 , 则⟨p⟩是非零素理想 ,

若 a 是 p 的因子 , 则存在属于 R 的 b , 使得 p=ab , 从而 ab 属于⟨p⟩ ,

又因为⟨p⟩是素理想 ,

所以 a 属于⟨p⟩或 b 属于⟨p⟩ , 那么 p|a 或 p|b , 即 a~p 或 b~p ,

再由命题 7.2 可知 , a 是 p 的平凡因子 , 即 p 是不可约元 ,



例 7.4 在整数环 Z 中 , 素元和不可约元的概念是等价的

证: 因为 n 与‒n 相伴 , 所以根据命题 7.3 的结论 , 不妨设 n 是正整数 ,

若 n 是不可约元 , 则 n 一定是素数 ,

由本章例 5.5 可知 , ⟨n⟩是非零素理想 , 再由命题 7.4 可知 , n 是素元 ,

反之 , 由命题 7.5 即可得证 ,

例 7.5 设 F 是数域 , 在一元多项式环 F[x]中 , 不可约元就是不可约多项式 ,

例 7.6 在整环 Z[ −3]={a+ −3b|a , b ∈ Z}中 , 证明 2 是不可约元 , 但不是素元

证: 首先 , 2 不是可逆元 ,

因为若 2 是可逆元 , 则存在属于 Z[ −3]的α , 使得 1=2α , 则 1=4N(α) , 矛盾 ,

所以 , 2 不是可逆元 ,

其次 , 考察 2 的因子 , 令 2=αβ , α , β属于 Z[ −3] , 则 4=N(2)=N(α)N(β) ,

若 N(α)=1 , 则α=±1 , α是可逆元;

若 N(α)=2 , 则这样的α不存在;

若 N(α)=4 , 则 N(β)=1 , 即β是可逆元 , 从而 2 与α相伴 ,

综上 , 2 仅有平凡因子 , 所以 2 是不可约元 ,

注意到 , 2|(1+ −3)(1‒ −3) , 但 2∤(1+ −3) , 这说明 2 不是素元 ,

二、唯一分解整环

定义 7.5 设 R 是整环 , 若对属于R�的任意 a 满足以下两个条件:

(1)存在不可约元 p1 , p2 , ⋯ , pm , 使得 a=p1p2⋯pm ;

(2)如果还有不可约元 q1 , q2 , ⋯ , qn , 使得 a=q1q2⋯qn , 那么 m=n ,

并且经过适当调整 qi的顺序之后 , 有 pi与 qi相伴 , i=1 , 2 , ⋯ , m ,

则称 R 是唯一分解整环 , 当然R�中任意元素 a 在 R 中有唯一分解 ,



在整数环 Z 中 ,

若 n≠0 , ±1 , 则 n 可以唯一地表示成不可约元的乘积 , 因此 Z 是唯一分解整环

令 F 是数域 , 在一元多项式环 F[x]中 ,

若 deg f(x)⩾1 , 则 f(x)可以唯一地表示成不可约多项式的乘积 ,

根据例 7.5 可知 , F[x]中的不可约多项式实际上是 F[x]中的不可约元 ,

因此 , F[x]是唯一分解整环 ,

为了研究唯一分解整环的判定问题 , 我们先证明如下引理 ,

引理 7.1 设 R 是唯一分解整环 , a 属于R� ,

令 a=p1p2⋯pm , 其中 p1 , p2 , ⋯ , pm是 R 的不可约元 ,

若 b 是 a 的真因子 , 则 b 与 p1 , p2 , ⋯ , pm中某些因子的乘积相伴 ,

证: 因为 b 是 a 的真因子 , 所以 b 属于R� ,

若令 a=bc , 则由命题 7.2 可知 , c 是 a 的真因子 ,

从而 c 属于R� , 那么 b , c 在 R 中有唯一分解 ,

若设 b=q1q2⋯qk , c=r1r2⋯rl , 其中 q1 , q2 , ⋯ , qk , r1 , r2 , ⋯ , rl , 是不可约元 ,

则 a=q1q2⋯qkr1r2⋯rl

再由 R 中元素分解的唯一性可知 , 每个 qi与某个 pj相伴 ,

因此 b 与 p1 , p2 , ⋯ , pm中某些因子的乘积相伴 ,

由引理 7.1 知道 , 唯一分解整环的非零不可逆元素的真因子个数是有限的

(不考虑相伴的因素) ,

推论 7.1 令 R 是唯一分解整环 , b , p1 , p2 , ⋯ , pm是 R 的不可约元 ,

若 b|p1p2⋯pm , 则存在 pi , 使得 b~pi



定理 7.1 若 R 是整环 , 则当且仅当 R 满足下面两个条件时 , R 是唯一分解整环

(1)若 R 中的元素列 a1 , a2 , ⋯ , an , ⋯ , 满足 ai+i|ai , i=1 , 2 , ⋯ ,

则存在某个 n , 使得 an~an+1~an+2~⋯ , 这里“~”表示元素相伴;

(2)R 中的不可约元是素元 ,

证: 若 R 是唯一分解整环 , 则 R 中每个非零元素的真因子个数是有限的

(可逆元的真因子个数为零) ,

所以不可能出现满足ai+1是ai(i=1 , 2 , ⋯)的真因子的无穷元素列a1 , a2 , ⋯ , an , ⋯

因此(1)成立 ,

下面证明条件(2)成立 ,

设属于 R 的 c 是不可约元 , 欲证 c 是素元 , 仅需证从 c|ab , 能得到 c|a 或 c|b ,

我们分几种情形讨论 ,

情形 1 , 若 a=0 或 b=0 , 则 c|a 或 c|b ,

情形 2 , 若 a 是可逆元或 b 是可逆元 , 则 c|b 或 c|a ,

情形 3 , 若 a , b 属于R� , 则 a , b 在 R 中有唯一分解 ,

若令 a=p1p2⋯pm , b=q1q2⋯qn , 其中 p1 , p2 , ⋯ , pm , q1 , q2 , ⋯ , qn是不可约元 ,

则 c|p1p2⋯pmq1q2⋯qn ,

根据推论 7.1 可知 , 存在某个 pi(i=1 , 2 , ⋯ , m)或某个 qi(j=1 , 2 , ⋯ , n) ,

使得 c~pi或者 c~qj , 于是 c|a 或 c|b ,

综上 , c 是素元 ,

反之 , 若整环 R 满足条件(1)和(2) , 我们来证明 R 是唯一分解整环 ,

首先说明对属于R�的任意元素 a , 都有不可约元 p , 使得 p|a ,

如果 a 是不可约元 , 则取 p=a , 若 a 是可约元 , 则 a 有真因子

设 a1是 a 的真因子 , 如果 a1是不可约元 , 则取 p=a1 , 否则 , a1有真因子 ,

设 a2是 a1的真因子 , ⋯⋯ , 继续这个过程 ,

则有一个元素列 a , a1 , a2 , ⋯ , 满足 a1|a , ai+1|ai , i=1 , 2 , ⋯ ,

至此 , 由条件(1) , 这个元素列一定终止于某个 an , 并且 an是不可约元 , an|a ,

进而 , 我们说明分解式的存在性 ,

令 p1是不可约元且 a=p1b , 令 p2是不可约元且 b=p2c ,

对元素 c 重复上面的过程 , 有 c=p3d , a=p1p2p3d , ⋯ ,



再由(1) , 此过程也不可能无限进行下去 , 它必定终止于有限步 ,

即存在 a=p1p2⋯pn , 其中 p1 , p2 , ⋯ , pn是不可约元 ,

最后 , 我们指出分解式的唯一性 ,

令 a=p1p2⋯pn=q1q2⋯qm , 这里每个 pi , qj都是不可约元 ,

进而由条件(2) , pi , qj都是素元 ,

不妨设 n⩽m , 因为 p1是素元 , 所以由 p1|q1q2⋯qm可知 , 存在 qj使得 p1|qj ,

因此 , 不妨假设 p1|q1 , 由于 p1 , q1都是不可约元 , 所以 , p1~q1 ,

于是存在属于 U(R)的 u1 , 使得 p1=u1q1 , 由整环的消去律得 u1p2⋯pn=q2⋯qm ,

又由命题 7.3 , u1p2是不可约元 , 那么类似地有 , u1p2~q2 ,

进而 , 存在属于 U(R)的 u2 , 使得 u1p2=u2q2 ,

再由整环的消去律得 u2p3⋯pn=q3⋯qm ,

继续这个过程 , ⋯⋯ ,

若 n＜m , 则存在属于 U(R)的 un使得 un=qn+1⋯qm , 从而 qn+1是可逆元 , 矛盾 ,

所以 , 一定有 n=m , 并且 pi~qi , 1⩽i⩽n=m

注意 , 利用定理 7.1 可以断定整环 Z[ −3]不是唯一分解整环 ,

但有一类非常重要的环: 主理想整环确是唯一分解整环 ,

引理 7.2 在主理想整环 R 中 , 不可约元与素元是等价的 ,

证: 由命题 7.5 可知 , 素元一定是不可约元 ,

因此 , 我们仅需证明 R 中的不可约元是素元 ,

令 p 是不可约元 , 如果⟨p⟩是极大理想 , 则由本章定理 5.3 可知 , ⟨p⟩是素理想

那么再由命题 7.4 可知 , p 是素元 ,

为此 , 下面我们证明⟨p⟩是极大理想 ,

假设存在 R 的一个理想 I=⟨a⟩满足⟨p⟩包含于⟨a⟩ , 则 a|p ,

但是 p 是不可约元 , 所以 a 是可逆元或 a~p ,

若 a 是可逆元 , 则 I=R , 若 a~p , 则⟨a⟩=⟨p⟩ , 这就是说 , ⟨p⟩是极大理想



定理 7.2 主理想整环 R 是唯一分解整环 ,

证: 我们只需验证 R 满足定理 7.1 中的条件(1)和(2) ,

又根据引理 7.2 可知 , 条件(2)已经满足 , 下面证明条件(1)成立 ,

为此 , 若任取元素列 a1 , a2 , a3 , ⋯ , an⋯ , 其中 ai+1|ai , i=1 , 2 , ⋯ ,

则存在对应的主理想列⟨a1⟩⊆⟨a2⟩⊆⟨a3⟩⊆⋯⊆⟨an⟩⊆⋯

现在,令 N =
i∈I

⟨ai⟩� ,则 N 是环 R 的理想

由于 R 是主理想整环 , 因此 , 不妨令 N=⟨a⟩ , 那么存在 n , 使得⟨a⟩包含于⟨an⟩ ,

而⟨an⟩是包含于⟨a⟩的 , 所以⟨a⟩=⟨an⟩ ,

从而对属于 Z+的任意 k 有⟨a⟩=⟨an⟩⊆⟨an+k⟩⊆⟨a⟩ , ⟨an⟩=⟨an+k⟩ , 即条件(1)满足 ,

定义 7.6 设 R 是整环 , 若 R 中的每一个非零元 a 都对应一个非负整数δ(a) ,

并且 R 中任意元素 b 都可以写作 b=aq+r , q , r 属于 R , r=0 或δ(r)＜δ(a) ,

则称 R 是欧几里得整环 , 简称欧氏环 ,

若在整数环 Z 中 , 令δ(a)=|a|(a 属于 Z) ,

在数域 F 上的一元多项式环 F[x]中 , 令δ(f(x))=deg f(x) (f(x)属于 F[x]) ,

则可知 Z 和 F[x]都是欧氏环 ,

例 7.7 证明高斯整环 Z[i]是欧氏环 ,

证: 事实上 , 对属于 Z[i]的α=a+bi , 可令δ(x)=a2+b2 , 即δ(α)=N(α) ,

因此 , 对任意α=a+bi , β=c+di , 为求 q , r 使得α=βq+r ,

可以考虑: αβ‒1=s+ti , 其中 s=ac+bd
c2+d2 = ac+bd

δ β
, t = bc−ad

δ β

然后再取 s' , t'属于 Z , 使得|s‒s'|⩽1
2

, |t‒t'|⩽1
2

,

那么若令 q=s'+t'i , r=α‒βq , 则有 q , r 属于 Z[i] , 而且α=βq+r ,

现在 , 我们只需证明 r=0 或δ(r)＜δ(β) , 但若 r=0 , 则结论已成立 ,

若 r≠0 , 则δ(r)=δ(α‒βq)=δ(β(αβ1‒q))=δ(β)δ(αβ‒1‒q)

=δ(β)δ(s‒s'+ti‒t'i)=δ(β)[(s‒s')2+(t‒t')2]

⩽δ(β) 1
2

2
+ 1

2

2
＜δ(β) , 即 Z[i]是欧氏环 ,



定理 7.3 欧氏环是主理想整环 ,

证: 设 R 是欧氏环 , I 是 R 的任意一个理想 , 若 I={0} , 则 I=⟨0⟩是主理想;

若 I≠{0} , 则由欧氏环的定义 , 对 I 的每一个非零元 a 都有一个非负整数δ(a) ,

从而存在非负整数的子集合{δ(a)|a ∈ I , a≠0} ,

于是存在属于 I 的非零元 b 使得δ(b)=min{δ(a)|a ∈ I , a≠0} ,

进而 , 对属于 I 的任意 c , 有 c=bq+r , r=0 或δ(r)＜δ(b) ,

那么由属于 I 的 r=c‒b 及 b 的取法可知 , r=0 , 即 c=bq , c 属于⟨b⟩ , I=⟨b⟩ ,

于是 , I 是 R 的主理想 ,

现在 , 我们已经知道: 欧氏环是主理想整环 , 主理想整环是唯一分解整环 ,

但是 , 它们的逆命题都不成立 ,

例如 , Z[x]是唯一分解整环 , 但不是主理想整环 ,

还有 a + b
2

1 + −19 a, b ∈ Z 是主理想整环 , 但不是欧氏环 ,


