
1 , 设|E : F|=n , 属于 E 的α是 F 上的代数元 , 且|F(α) : F|=m , 证明 m|n ,

证明: |E : F|=|E : F(α)||F(α) : F| , 故 m|n ,

2 , 设包含 F 的 E 是域的扩张 , 且|E : F|是素数 ,

试证明对属于 E‒F 的任意α , 都有 E=F(α)

证明: 因为|E : F|=|E : F(α)||F(α) : F| , 从而|E : F(x)|=1 或|F(α) : F|=1 ,

若|F(α) : F|=1 , 则α属于 F 矛盾 , 因此|E : F(α)|=1 , 故 E=F(α) ,

3 , 设 K=Q(3 2 , 3 2i) , 证明|K : Q(3 2)|=2 , |K : Q|=6 ,

证明 1: 令 f(x)=x2+(3 2)2 , 则 f(x)是3 2i 在 Q(3 2)上的极小多项式 ,

故|K : Q(3 2)|=2 ,

而
3 2在 Q 上的极小多项式为 g(x)=x3‒2 , 故|Q(3 2) : Q|=3 ,

从而|K : Q|=|K : Q(3 2)||Q(3 2) : Q| ,

证明 2: 首先说明 Q(3 2 , 3 2i)=Q(3 2+3 2i) ,

显然 x3‒2 , x3+2 分别是
3 2 , 3 2i 的极小多项式 ,

根分别为
3 2 , 3 2ω , 3 2ω和

3 2i , 3 2ωi , 3 2ωi , 由[第四章引理 3.1]得证 ,

令α=3 2+3 2i , 则α3=2(1+i)3=‒4+4i , 从而有(α3+4)2=‒16 , 即α6+8α3+32=0

故α在 Q 上的极小多项式为 f(x)=x6+8x2+32 , 因此|K : Q|=|Q(3 2+3 2i) : Q|=6

又因|K : Q|=|K : Q(3 2)||Q(3 2) : Q| , 而
3 2在 Q 上的极小多项式为 g(x)=x3‒2 ,

故|Q(3 2) : Q|=3 , 从而有|K : Q(3 2)|=2 ,



4 , 求|Q( 2 , 3) : Q|及|Q( 5+ 3) : Q( 15)| ,

解: Q( 2 , 3)=Q( 2+ 3) , 令α= 2+ 3 , 则(α‒ 2)2=3 , 即α2‒1=2 2α ,

从而(α2‒1)2=8α2 , 即α4‒10α2+1=0 ,

故α在 Q 上的极小多项式为 f(x)=x4‒10x2+1 , 因此|Q( 2 , 3) : Q|=4 ,

令β= 3+ 5 , 则(β‒ 5)2=3 , 即β2+2=2 5β ,

从而有(β2+2)2=20β2 , 即β4‒16β2+4=0 ,

从而 x4‒16x2+4 是β在 Q 上的极小多项式 , 故|Q( 3+ 5) : Q|=4 ,

又因|Q( 15) : Q|=2 , 所以由|Q( 3+ 5) : Q|=|Q( 3+ 5) : Q( 15)||Q( 15) : Q|

可知|Q( 3+ 5) : Q( 15)|=2 ,

5 , 设 E=F(S) , S 包含于 E 且 S 仅含 F 上的代数元 , 试证明 E 是 F 的代数扩张

证明: 对属于 E 的任意β ,

存在有属于 S 的α1 , α2 , ⋯ , αn , 使得β属于 F(α1 , α2 , ⋯ , αn)

又因α1 , α2 , ⋯ , αn为 F 的代数元 , 因此 F(α1 , α2 , ⋯ , αn)是 F 上的有限扩张 ,

从而是代数扩张 , 所以β是代数元 , E 是 F 的代数扩张

6 , 证明若 a+ b≠0 , 则 Q( a , b)=Q( a+ b) , 其中任意 a , b 属于 Q ,

证明: 若 a=b , 则显然得证 ,

若 a≠b , 则因为 a+ b属于 Q( a+ b) , 所以 Q( a , b)包含 Q( a+ b) ,

又因为 a+ b属于 Q( a+ b) , 所以( a+ b)‒1= 1
a+ b

= a− b
a−b

属于 Q( a+ b)

从而 a‒ b属于 Q( a+ b) , 进而有 a , b属于 Q( a+ b) ,

从而 Q( a , b)包含于 Q( a+ b) , 故 Q( a , b)=Q( a+ b)



7 , 求包含 Q 的扩张 Q( 2 , 3 , 5)的本原元 ,

解: 易知 2+ 3为 Q( 2 , 3)的一个本原元 ,

下证 2+ 3+ 5是 Q( 2 , 3 , 5)的一个本原元 ,

因为 2+ 3在 Q 上的极小多项式为 f(x)=x4‒10x+1

5在 Q 上的极小多项式为 g(x)=x‒5 ,

则 f(x) , g(x)的所有根为± 2± 3 , ± 5

考虑方程 x(‒ 5 , ‒ 5)=( 2+ 3)‒(± 2± 3) ,

因为 1 不适合上面所有方程 , 取ξ= 2+ 3+ 5 ,

则ξ是 Q( 2 , 3 , 5)的一个本原元 ,

8 , 设 K⊇E⊇F 是域的扩张 ,

试证明若包含 F 的 K 是有限扩张 , 则包含 E 的 K 和包含 F 的 E 是有限扩张 ,

证明: 若包含 F 的 K 是有限扩张 ,

则存在有限个 F 上的代数元α1 , α2 , ⋯ , αn也是 E 上的代数元 ,

使得 K=F(α1 , α2 , ⋯ , αn)

从而 K=E(α1 , α2 , ⋯ , αn) , 由[第四乘定理 3.3(1)]可知包含 E 的 K 是有限扩张

因为 E 是域 F 上 K 的子空间 , 而包含 F 的 K 是有限扩张 ,

所以包含 F 的 E 是有限扩张 ,



9 , 设域 F , E , K 满足 K⊇E⊇F , 且|E : F|=m ,

试证明若属于 K 的α是 F 上的 n 次代数元 , 且(m , n)=1 ,

则α是 E 上的 n 次代数元

证明: 由题意知α是 E 上的代数元 ,

从而|E(α) : F|=|E(α) : E||E : F| , 即包含 F 的 E(α)是有限扩张 ,

由已知可知 , |E(α) : F|=|E(α) : F(α)|F(α) : F|=|E(α) : F(α)|n ,

因为(m , n)=1 , 所以 n 整除|E(α) : E| ,

因为属于 K 的α是 F 上的 n 次代数元且 E 包含 F ,

所以|E(α) : E|⩽n , 故|E(α) : E|=n ,

习题 1 设 K 是域 F 的扩张 , 属于 K 的α , β都是 F 上的代数元 ,

假设|F(α) : F|与|F(β) : F|互素 ,

试证明|F(α , β) : F|=|F(α) : F||F(β) : F| ,

从而α在 F 上的极小多项式是 F(β)中的不可约多项式 ,

证明: 根据|F(α) : F||F(α , β) : F|、|F(β) : F||F(α , β) : F|及|F(α) : F|与|F(β) : F|互素

得|F(α) : F||F(β) : F||F(α , β) : F| ,

再由|F(β)(α) : F(β)|⩽|F(α) : F| ,

可知|F(α , β) : F|=|F(β)(α) : F(β)||F(β) : F|⩽|F(α) : F||F(β) : F|

因此 , |F(α , β) : F|=|F(α) : F||F(β) : F| ,

这也说明|F(β)(α) : F(β)|=|F(α) : F| ,

即α在 F 上的极小多项式是 F(β)中的不可约多项式

习题 2 将域 F 上多项式 x2‒α的根记为 2

试证明若|K : F|=2 , 则存在 F 上不可约多项式 x2‒D , 使得 K=F( D) ,

证明: 取属于 K‒F 的α , 由|K : F|=2 知α是 F 上代数元 ,

设极小多项式为 f(x)=x2+ax+b ,

由 f(α)= α + a
2

2
+ b − a2

4
=0 , 可知 α + a

2

2
属于 F

令α+ a
2

=β , 则β属于 K‒F 且 x2‒β2为所求多项式 ,



习题 3 设α是多项式 x3‒3x‒1 的一个实根 , 证明 2不属于 Q(α) ,

证明: 因为 x3‒3x‒1 是有理数域上不可约多项式 ,

所以|Q(α) : Q|=3 , 而|Q( 2) : Q|=2 ,

若 2属于 Q(α) , 则|Q(2) : Q|整除|Q(α) : Q| , 矛盾 ,

习题 4 设|E : F|=n , α属于 E ,

试证明包含 F(α)的 E 是有限扩张 , 且|E : F|=|E : F(α)||F(α) : F| ,

证明: 由于包含 F 的 E 是有限扩张 , 所以α是 F 上的代数元 ,

从而包含 F 的扩张 F(α)是有限扩张 ,

因为|E : F|=n , 故存在 F 上的代数元α1 , ⋯ , αt使得 E=F(α1 , ⋯ , αt) ,

又因α属于 E , 从而 E=E(x)=F(α1 , ⋯ , αt)(α)=F(α)(α1 , ⋯ , αt)

于是包含 F(α)的 E 是有限扩张 , |E : F|=|E : F(α)||F(α) : F| ,

习题 5 设α是 E 上的代数元 , 包含 F 的 E 是代数扩张 , 试证明α是 F 上的代数元

证明 1: 设α是 E[x]中非零多项式 f(x)=anxn+⋯+a1x+a0的根 ,

则α是 F(an , ⋯ , a1 , a0)上的代数元 ,

因为包含 F 的 F(an , ⋯ , a1 , a0)是有限扩张 ,

从而包含 F 的 F(an , ⋯ , a1 , a0 , α)是有限扩张 , 于是α是 F 上的代数元

证明 2: 因为α是 E 上的代数元 , 故包含 E 的 E(α)是代数扩张 ,

又由于包含 F 的 E 是代数扩张 , 故包含 F 的 E(α)是代数扩张 ,

因此α是 F 上的代数元 ,

习题 6 设 E⊇K⊇F 是域的扩张 ,

则当且仅当包含 K 的 E 和包含 F 的 K 均是代数扩张时 , 包含 F 的 E 是代数扩张

证明: 必要性 , 由包含 F 的 E 是代数扩张知 , E 中所有元素都是 F 上的代数元 ,

由包含 F 的 K 知 E 中所有元素也是 K 上的代数元 ,

因此包含 K 的 E 和包含 F 的 K 均是代数扩张 ,

充分性参见[第四章定理 3.4] ,



习题 7 证明对任一包含 F 的扩张 K 存在唯一的 E : K⊇E⊇F ,

使包含 F 的 E 是代数扩张 ,

使包含 E 的 K 是纯超越扩张(即 K 中除 E 中元素外没有 E 的代数元)

证明: 因为 K 是 F 的一个扩张 ,

考虑 K 中所有 F 的代数元形成的 K 的一个子域 , 用 E 表示 ,

显然 E 是 K 与 F 的中间域 , 并且是 K 中 F 的最大代数扩张 ,

这时 K 中除 E 的元素外 , 任意元都是 E 的超越元 ,

这是因为 , 若属于 K 的α是 E 上代数元 , 那么 E(α)是 E 的代数扩张 ,

而 E 是 F 的代数扩张 , 因此 E(α)是 F 的代数扩张 ,

故α是 F 的代数元 , 于是α属于 E ,

所以 , 包含 E 的 K 是纯超越扩张 ,

E 的唯一性显然

习题 8 求属于 Q( 2 , 3 3)的 u , 使得 Q( 2 , 3 3)=Q(u) ,

解: 易知 2 , 3 3在 Q 上的极小多项式分别为 x2‒2 , x3‒3 ,

极小多项式的根分别为α1= 2 , α2=‒ 2和β1=3 3 , β2=
−1+ 3i

2
, β3=

−1− 3i
2

由βi‒β1≠α1‒αj , i≠1 知 u= 2+3 3 ,

习题 9 设α是一个正有理数 , 证明 Q( a , i)=Q( a+i) ,

证明: 显然有 Q( a , i)包含 Q( a+i) ,

由于
1

a+1
属于 Q( a+i) , 故 a‒i 属于 Q( a+i) ,

从而 a , i 属于 Q( a+i) , Q( a , i)包含于 Q( a+i) ,



习题 10 求下列域作为 Q‒线性空间的一组基 :

(1)Q( 2 , 3) ,

(2)Q( 3 , iω) , 其中ω=−1+ −3
2

解: (1)因为|Q( 2 , 3) : Q|=|Q( 2 , 3) : Q( 2)||Q( 2) : Q|=4 ,

且 Q( 2 , 3)=Q( 2+ 3) ,

所以 1 , 2+ 3 , ( 2+ 3)2 , ( 2+ 3)3

为 Q( 2 , 3)作为 Q‒线性空间的一组基

易知 1 , 2 , 3 , 6为另一组等价基 ,

(2)因为 Q( 3 , iω)=Q( 3 , i)=Q( 3+i) ,

且由 3不属于 Q(i)知 1＜|Q( 3 , i) : Q(i)|⩽|Q( 3) : Q|=2 ,

即|Q( 3 , i) : Q(i)|=2 ,

所以|Q( 3 , iω) : Q|=|Q( 3 , i) : Q(i)||Q(i) : Q|=4 ,

那么 Q( 3 , iω)作为 Q‒线性空间的一组基为 1 , 3+i , ( 3+i)2 , ( 3+i)3 ,

等价基为 1 , i , 3 , −3 ,


